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Abstract

Markov chains provide a simple framework for
modeling the evolution of stochastic processes,
but their formulation assumes fixed transition
probabilities that do not adapt to changing con-
ditions. In financial markets, this assumption is
often violated, as asset return dynamics depend
on time-varying market factors. In this project,
we propose a deep learning framework for mod-
eling next-day equity return dynamics through a
time-dependent Markov chain. Daily returns of
JPMorgan Chase ($JPM) are discretized into a set
of states, and a multilayer perceptron is trained
as a multi-class classifier to estimate conditional
transition probabilities given the current return
state and observable fundamental and macroeco-
nomic features. The resulting model produces a
probability distribution over future return states
rather than a single point forecast, allowing un-
certainty to be explicitly quantified. We compare
the learned transition structure to an empirical
Markov chain constructed directly from historical
data and analyze the resulting transition matrices
and simulated price paths. While the model is
not intended for short-horizon trading, it provides
an interpretable probabilistic framework for un-
derstanding short-term return dynamics, risk, and
regime behavior in equity markets.

1. Introduction
Over the past two decades, the quantitative finance industry
has embraced deep learning to decompose noise into action-
able patterns across virtually every asset class. In this paper,
we take a distinct approach on this premise by attempting
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to construct a discrete-space, time-inhomogeneous Markov
chain to model the day-to-day price evolution of JPMorgan
Chase ($JPM) using deep learning.

A Markov chain is a stochastic process {Xk} satisfying the
Markov property

P(Xk = xk | Xk−1, Xk−2, . . . , X0) = P(Xk = xk | Xk−1).

In other words, it is a sequence of random variables used to
represent an evolving random system under the assumption
that future states depend only on the current state. If we
denote the probability of transitioning from state i to state j
in one time step by aij , we can form a transition matrix A
whose rows each sum to one. Concretely, the matrix takes
the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 ,

n∑
j=1

aij = 1 ∀i.

Each row of A represents the conditional probability distri-
bution of tomorrow’s return state given today’s return state.
Visually, one may interpret a single row as a probability
mass function over possible next-day outcomes, while the
full matrix encodes how these distributions change across
different current return regimes. In our setting, each state
corresponds to the daily percentage change in $JPM, with
the time period between transitions being one trading day.
Importantly, once the transition matrix of a Markov chain
is known, the full dynamics of the process are determined,
provided the initial distribution is given.

Formally, let {rt}t≥0 denote the sequence of daily returns
of $JPM, where

rt =
Pt − Pt−1

Pt−1
,

and Pt denotes the adjusted closing price on trading day t.
We discretize the continuous return space into a finite set of
n bins,

S = {s1, s2, . . . , sn},

and define the Markov state variable Xt by assigning each
realized return rt to the corresponding bin in S.
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More generally, the assumption of stationarity can be re-
laxed by allowing the transition matrix to vary with time. A
time-inhomogeneous Markov chain is defined by a sequence
of transition matrices {At}t≥0, where

P(Xt+1 = j | Xt = i) = aij(t),

n∑
j=1

aij(t) = 1 ∀i, t.

Under this formulation, the evolution of the state distribution
πt ∈ Rn is governed by

πt+1 = πtAt,

where πt(i) = P(Xt = i). Unlike the stationary case,
closed-form characterizations of long-run behavior gener-
ally do not exist, and the dynamics depend explicitly on
the temporal sequence {At}. This formulation is partic-
ularly well suited to financial markets because structural
changes and evolving information invalidate the assumption
of time-invariant transition probabilities.

If we let a financial asset’s value over time be the sequence
of random variables we are modeling, knowledge of its
transition matrix would yield strong predictive power. Not
only could one compute expected future prices using the
expectation operator, but one could also deploy portfolio op-
timization techniques more effectively if such matrices were
available across a wide range of assets. Numerous studies,
however, have shown that the Markov property fails in em-
pirical financial data (see, e.g., (Cecen et al.)). This implies
that the price of a financial asset tomorrow depends on more
than just its price today, which is intuitively unsurprising.
For example, the trend in U.S. interest rate movements is
often just as important as the level of rates themselves. See
(Guyon & Lekeufack) for an empirical illustration of the
failure of Markovian dependence in financial markets.

While financial markets exhibit no pure Markovian depen-
dence, we argue that this failure can be reconciled through
a time-dependent transition matrix whose structure evolves
as new information arrives. The key insight is that price
movements do not violate the spirit of Markovian behavior,
but rather the assumption of a stationary transition matrix.
Financial markets evolve as indicators change, their im-
portance shifts over time, and new indicators continuously
emerge. At its core, however, the act of buying a stock re-
flects the belief: “given the price today, the stock will go up
or down tomorrow.” This is the essence of the Markov prop-
erty. Consequently, the task of the quantitative investor is
to filter out exogenous information from this basic decision.
This is precisely where our project derives its value.

The central idea is that, without deep learning, one effec-
tively models

P(xt+1 | xt,F),

where xt+1 denotes the price of $JPM at time t+ 1, xt its
price at time t, and F is a vector of relevant information

drawn from both the present and the past. In this project,
we aim to reduce the dimensionality of this conditional
probability to

P(xt+1 | xt)

by encoding the information contained in F directly into
a time-evolving transition matrix. In practice, this would
involve updating the transition matrix daily as new data
arrive; however, due to time constraints, we do not perform
forward testing in this study. Deep learning enables this
temporal evolution to occur flexibly and adaptively, filtering
noise and capturing nonlinear dependencies that are often
missed by human-designed models.

We emphasize that the objective of this work is not to pro-
pose a trading strategy or to maximize predictive accuracy.
Rather, our goal is to study whether a time-inhomogeneous
Markov structure can be recovered and successfully inter-
preted when dynamics are allowed to evolve with flexible
incoming information. This perspective motivates several
modeling choices, such as discretizing returns and prioritiz-
ing the creation of a probabilistic structure instead of direct
price prediction. These decisions change both the scope
of the analysis and the way our model should be evaluated.
With that being said, the contributions of this paper lie in
the interpretability and structure of the learned transition
dynamics.

An important advantage of the transition matrix representa-
tion is that it enables the computation of multi-step return
distributions. Given an initial distribution πt over states at
time t, the distribution at horizon t+ k is given by

πt+k = πtAtAt+1 · · ·At+k−1.

This recursive structure provides a mechanism for measur-
ing uncertainty forward in time, allowing one to analyze
a wide variety of useful modeling scenarios over arbitrary
time horizons. These quantities are generally inaccessible
when relying solely on point forecasts of future prices.

While direct price prediction is a natural extension of this
framework, a transition matrix provides substantially richer
information. By modeling the full conditional distribution
over next-day return states, the framework explicitly repre-
sents uncertainty, tail risk and asymmetries in tomorrow’s
return dynamics. This representation is well suited to tools
from stochastic calculus, stochastic control and stochastic
optimization. We anticipate that the portfolio manager can
use our transition dynamics as inputs to their optimization
and risk management procedures. We discuss these potential
applications and their limitations in the discussion section.

2. Related Work
Our work draws inspiration from the theoretical framework
of Markov Chain Neural Networks proposed by Awiszus
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and Resenhahn, who demonstrate architectural methods for
blending probabilistic Markov structures with neural net-
works. Although we do not directly implement their design
in this project, we draw heavily from their core insight: that
incorporating an explicit probabilistic component can signif-
icantly enhance the interpretability and structure of neural
network outputs (Awiszus & Rosenhahn).

A closely related application appears in the use of hidden,
time-inhomogeneous Markov chains for predicting mor-
tality outcomes in life insurance modeling (Kiermayer &
Weiß). In that setting, the authors reconstruct latent tran-
sition structures using stochastic gradient descent. A key
distinction between their work and ours is that they aim
to uncover endogenous effects in stochastic systems after
they have occurred. In contrast, our objective is to use deep
learning to predict future transition probability distributions
directly. This task is inherently noisier, as it is impossible
to incorporate all exogenous information shocks occurring
between the present and future into the model.

Guyon and Julien address a closely related challenge by
using machine learning techniques to quantify the extent to
which volatility is endogenous to a financial asset (Guyon
& Lekeufack). Their results confirm the intuition that re-
covering latent volatility structures is more reliable than
predicting future volatility, although the latter remains fea-
sible despite increased variability in accuracy. Our work
aligns with the latter objective, seeking to forecast future
probabilistic dynamics rather than retrospectively identify
latent structures.

Wilinski’s research on time-inhomogeneous Markov chains
for financial forecasting further informs our approach,
though his models rely on algorithmic updates with fixed
functional bounds (Wilinski). We circumvent this limitation
by employing deep learning, allowing for flexible, data-
driven evolution of the transition matrix. While Wilinski’s
framework achieves robust results, we anticipate that our
approach is better suited to handling the high levels of noise
present in financial data. Moreover, the explicit use of tran-
sition matrices in our model provides additional utility for
portfolio-level applications (see the Discussion section).

Taken together, this body of work suggests a tradeoff be-
tween flexibility, interpretability and predictive power in
stochastic modeling. Approaches that seek to identify la-
tent probabilities benefit from reduced noise in the system,
while predictive models are forced to confront higher vari-
ance due to exogenous shocks to the dynamic system. Our
methodology occupies a middle ground. Rather than in-
ferring transition probabilities retrospectively or imposing
static functional updates, we learn a time-varying matrix
that is both probabilistic and explicit. This design provides
easier interpretability on the state-to-state level while allow-
ing the transition dynamics to evolve as new information

gets incorporated into the system. This niche we occupy is
particularly well suited to financial applications.

We close by analyzing a related study on exchange rates
assuming randomly selected transition matrices drawn from
an ergodic set (Mettle et al.). Their approaches can motivate
alternative designs that relax the strict Markov assumption;
they generally sacrifice interpretability and computational
efficiency. In contrast, constructing an explicit transition
matrix enables direct and efficient implementation in large-
scale simulations and forward-testing frameworks, offering
substantial advantages when evaluating millions of port-
folio configurations or conducting extensive Monte Carlo
analyses.

3. Data Acquisition and Preprocessing
All datasets used in this study were acquired from FactSet.
We categorized the retrieved data into three primary groups:
macro, fundamental, and equity price data. Macro-level
data included high-yield and investment-grade bond rates,
as well as the federal funds rate. These variables served as
background information, capturing large-scale, aggregated
signals that reflect broader trends in the U.S. economy. This
layer of data provided the model with context regarding
national economic conditions.

Figure 1. This chart shows the different categories of data we used
to train our model. All data is sourced from FactSet.

Fundamental data served a similar purpose at a narrower
scope, focusing specifically on JPMorgan Chase. These
datasets, reported primarily on a quarterly basis, provided
detailed information on JPM’s financial health and oper-
ational performance. As a result, fundamental variables
constituted the majority of our feature set. Finally, the
equity-price dataset contained day-to-day information on
JPM’s stock price, including daily returns and short-term
price trends, and represented the primary object of interest
in our analysis.

Although the necessary datasets were available through Fact-
Set, a central challenge was feature sparsity. In an earlier
experiment aimed at rapidly validating the feasibility of
our modeling framework, we adopted a naive preprocessing
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strategy that pruned all features containing missing values.
As expected, this approach resulted in substantial data loss,
particularly among JPM’s fundamental variables and the
high-yield and investment-grade bond series. For the fi-
nal set of experiments, recovering this lost information was
essential to unlocking the full potential of the revised model.

To address missing values, we synthesized data using a com-
bination of linear interpolation and last observation carried
forward/backward (LOCF) extrapolation. The appeal of
this approach lies in its simplicity and its reliance on real-
world observations, ensuring that synthesized values remain
intrinsically tied to observed data. However, to preserve
data fidelity, we imposed strict limitations on the scope of
interpolation and extrapolation. In particular, we did not in-
terpolate or extrapolate across calendar years. For example,
a Q1 2023 value was not inferred from a Q4 2022 observa-
tion, as these periods correspond to distinct macroeconomic
and firm-specific contexts. To maintain internal consistency
and avoid obscuring latent relationships between data cate-
gories, we pruned any features with gaps too large to support
reliable interpolation or extrapolation.

Feature selection was guided not only by availability but
also by what indicators offered interpretability. We retained
variables only if they had a clear economic interpretation
and could realistically influence the dynamics of the next
day’s price. FactSet provides a wide range of fundamental,
technical, and derived indicators, but many were excluded
to avoid introducing data points that could complicate the
interpretation of the learned transition dynamics. This de-
sign choice reflects our emphasis on structured probabilistic
modeling rather than on maximizing our predictive perfor-
mance.

Once synthetic values were generated within each dataset,
the next step was to merge them into a unified training
set. This posed a nontrivial challenge, as the datasets were
recorded at different temporal frequencies: daily (equity
prices), quarterly (fundamentals), and yearly (certain macro
indicators). We used the daily price history dataset as the
temporal baseline. While quarterly and yearly values could
be reasonably extrapolated to a daily frequency, the reverse
operation—aggregating daily prices or volumes into quar-
terly or yearly summaries—lacked a clear economic inter-
pretation.

To facilitate merging, we engineered two additional features
from the price history data: quarter and year. These
variables mapped each trading day to its corresponding fiscal
quarter and calendar year, allowing the remaining datasets
to be joined on a common temporal index. In practice,
this required reconstructing precise calendar dates, as the
raw price history data recorded dates in a partially masked
format (e.g., //). To resolve this issue, we employed the
bizdays package in R, which provides robust tools for

business-day calculations and calendar conversions.

Using these reconstructed date references, we aligned the
macroeconomic and fundamental datasets to the daily price
baseline, extrapolating quarterly and yearly values as needed
to form the final feature matrix X . The final preprocessing
step involved constructing features corresponding to the
transition matrix bins. For an arbitrary trading day D, the
backward bin was defined as the percentage change from
day D − 1 to D, while the forward bin corresponded to
the percentage change from day D to D + 1. Since the
first and last observations lacked one of these quantities,
they were removed from the dataset. The forward bin was
subsequently excluded from the feature matrix and instead
used to construct the label vector Y .

This initial data construction process produced a training
set of dimension 4,181 × 134. A key limitation of this
dataset was the relatively small number of features, a con-
sequence of prioritizing sample size. Although FactSet
provided additional variables, many were excluded due to
shorter historical coverage. To study the trade-off between
data quantity and feature richness, we constructed a second
dataset that maximized the number of features, yielding a
training set of dimension 2,369× 198. This allowed us to
evaluate whether a larger number of training samples with
fewer features outperformed a smaller dataset with greater
feature dimensionality.

4. Model Comparison and Experimental
Results

We evaluate two models on a diagnostic dataset: a transition-
based neural network and an ablated baseline model in
which the current state is removed from the input vector.
Both models share the same multilayer perceptron (MLP)
architecture in terms of depth, hidden-layer widths, activa-
tion functions, and dropout rates. The only architectural
difference is whether information about the current state is
included in the input.

4.1. Transition Model Architecture

The transition model takes as input the full feature vector
concatenated with a one-hot encoding of the current state.
This combined input is passed through a fully connected
neural network with five hidden layers of sizes

64 → 128 → 256 → 128 → 64.

Each hidden layer uses the GELU activation function and
dropout with probability p = 0.2. The final hidden represen-
tation is passed through a linear output layer that produces
scores for each return bin. These scores are converted into
probabilities via a softmax layer and trained using cross-
entropy loss.

4



A Deep Learning Framework for Time-Dependent Markov Chain Modeling of Equity Prices

Because the model conditions explicitly on the current state,
its output varies with the state and can be interpreted as a
row of a time-varying transition matrix.

4.2. Baseline Model Architecture

The baseline model uses the same MLP architecture, in-
cluding the same hidden-layer sizes, GELU activations, and
dropout probability of 0.2. The only difference is that its in-
put consists solely of the feature vector, with no information
about the current state included.

4.3. Training Procedure

Both models are trained using the same chronological split
into training, validation, and testing datasets to ensure a fair
comparison. The Adam optimizer is used with a learning
rate of 10−3, and cross-entropy loss is employed as the train-
ing objective. Model selection is performed by monitoring
the validation loss over training epochs and selecting the
model with the lowest validation loss. The selected models
are then evaluated on the held-out test set.

Figure 2. This graph shows the training and validation cross-
entropy loss for both models over the training epochs. For both
models, the training loss decreases steadily over the epochs, indi-
cating that the models are able to fit the data. However, the baseline
without information about the current state starts overfitting very
early. While its training loss is decreasing, its validation loss starts
growing early and keeps increasing steadily. This suggests that
the baseline model learns patterns that do not generalize well to
unseen data.

4.4. Error Severity and Predictive Performance

To assess predictive accuracy beyond exact classification,
we examine the error severity distribution, defined as the
absolute difference between the predicted return bin and the
ground-truth bin. Smaller values correspond to predictions
closer to the realized return.

Both models exhibit broadly similar error severity distribu-
tions, reflecting the inherent difficulty of predicting finely
discretized financial returns in a noisy environment. How-

Figure 3. This heatmap compares the empirical transition matrix
computed directly from the testing data with the transition matrix
estimated by the transition model which is averaged over the test
set. The empirical matrix is quite sparse and noisy which is in
line with the limited number of observations for the large number
of possible state transitions and the inherent randomness of the
daily returns. In contrast to this, the transition matrix estimated by
the model is much smoother. Instead of memorizing the specific
transitions present in data, the model assigns probability mass
across nearby states. This produces a smoother structure, reducing
noise and better capturing general patterns instead of fitting random
movement present in data.

ever, the transition model places slightly more probability
mass on smaller errors compared to the baseline model. This
suggests that conditioning predictions on the current state
provides a modest improvement in predictive accuracy and
stability.

4.5. Representation Analysis via UMAP

UMAP projections of the learned hidden representations for
both models are broadly similar, which is expected given
that the architectures and input features are nearly identical.
In both cases, the embeddings form structured clusters rather
than a random scattering of points, indicating that each net-
work learns a meaningful low-dimensional representation
of the data.

The transition model exhibits a slightly smoother embedding
structure, although the difference is subtle. This suggests
that state information influences the learned representations
in a nuanced way, without fundamentally altering the orga-
nization of the feature space.

4.6. Generalization and Transition Dynamics

While both models are capable of fitting the training data,
the baseline model begins to overfit relatively quickly. In
contrast, the transition model generalizes more smoothly
across epochs. Additionally, the learned transition matrix
from the transition model displays a smoother and more reg-
ular structure than the empirical transition matrix, which is
consistent with the limited and noisy nature of the available
data.
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Figure 4. The error severity distribution shows the absolute differ-
ence between the predicted return bin and the ground truth, where
smaller values correspond to predictions closer to the actual return.
Both models show an overall similar distribution in errors, which
reflects the difficulty in predicting narrow states in a noisy financial
setting. However, the transition model does place slightly more
mass towards the smaller errors compared to the baseline model.
This suggests that conditioning the predictions on the current state
does help somewhat with making more accurate and stable.

4.7. Test Set Results

On the test set of 356 observations, the transition model
achieves an accuracy of

3.1%± 0.9%,

compared to
2.5%± 0.8%

for the baseline model. Given the very fine-grained dis-
cretization into 55 return bins and the intrinsic noise of
financial data, these low accuracy levels are expected. Small
fluctuations in returns can easily move observations across
adjacent bins, making exact classification difficult. Random
chance accuracy under uniform guessing is approximately
1
55 = 1.8%, which places both models meaningfully above
chance despite the noisy setting.

The uncertainty associated with the accuracy estimates is
comparable to the observed difference between the two
models, indicating that the improvement in accuracy is not
statistically significant. Consequently, accuracy alone is not
a reliable metric of model quality in this setting.

4.8. Summary

Overall, the experimental results suggest that conditioning
the model on the current state leads to modest improve-
ments in training stability, error severity, and the smooth-
ness of learned transition dynamics. While the gains in
raw accuracy are small and not statistically significant, the
transition model appears to produce more robust and sta-

Figure 5. The UMAP projections for the two models are broadly
similar, which reflects that both models share the same architecture
and are trained on almost the same input features. For both models,
the embedding forms some structured clusters rather than a random
scattering of points. This indicates that each network learns a
low-dimensional internal representation of the data. While the
transition model does have a slightly smoother structure, it is very
subtle, suggesting that the state information influences the learned
representations in a subtle way that does not fundamentally change
how the feature space is organized.

ble predictions, supporting the value of incorporating state
information when modeling return transitions.

5. Discussion
5.1. Results and Broader Impact

The results in this project should be interpreted through
the lens of interpretable probabilistic modeling rather than
perfect point prediction. The main objective of the project
was not to maximize next-day return accuracy, but to build
a stable and interpretable conditional distribution over fu-
ture return states. Given the level of noise in the financial
markets, it is expected that modeling precision will be some-
what low, specifically if we are to discretize returns into bins.
Therefore, the typical accuracy metrics are not sufficient to
evaluate the effectiveness of the model.

Instead, the value of the model lies in the structure of the
learned transition probabilities. By producing a full proba-
bility distribution over next-day returns, the model conveys
substantially more information than a single-point forecast.
This probabilistic output enables richer downstream analy-
sis, particularly in risk management and portfolio construc-
tion. A straightforward application would be to compute
the expected next-day price of a single stock using standard
statistical methods; however, restricting the model to this
use case underutilizes its potential. The primary value of the
framework lies in the interpretability and flexibility afforded
by an explicit transition matrix.

When such matrices are available across multiple assets,
they can be combined with tools from stochastic calculus
and stochastic control to inform more sophisticated portfolio
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management strategies. For instance, a portfolio manager
could leverage asset-specific transition matrices to design
hedging strategies that better account for exogenous volatil-
ity. Implementing such an approach would require estimat-
ing transition matrices for a broad universe of equities and
potentially tailoring aspects of the model to investor-specific
objectives. Nevertheless, the framework naturally extends
to a wide range of applications, from long-term portfolio
optimization to broader risk management settings.

In isolation, computing a transition matrix for a single asset
offers limited advantages over traditional deep learning pre-
diction methods. However, when aggregated across assets
and analyzed jointly, transition matrices unlock substantially
greater analytical power. While pursuing these extensions
lies beyond the technical and mathematical scope of the
present work, they represent promising directions for future
research. These considerations naturally motivate a discus-
sion of the framework’s limitations, which are outlined in
the following section.

5.2. Limitations

The following limitations arise from deliberately made
choices to balance stability, data constraints, and inter-
pretability, prioritizing the latter.

Although the model produces next-day probability distri-
butions, it is not intended to function as a trading strategy.
While such an application lies outside the scope and objec-
tives of this project, a natural extension would be to use the
learned transition probabilities to forecast daily price move-
ments for $JPM and generate trading signals. For example,
if the return space were reduced to two states—positive and
negative—the model could suggest taking a long position
when the probability of a positive return exceeds 50% and a
short position otherwise. Despite its intuitive appeal, such a
strategy would not be economically tradable in practice.

The primary obstacle is that the probability distributions
evolve daily, requiring frequent position changes. This
would lead to extremely high turnover, and the associated
transaction costs—including bid–ask spread, slippage, and
commissions—would exceed the expected daily returns,
which are typically on the order of 5–10 basis points. Even
with a perfectly accurate signal, such a strategy would be
unprofitable once trading costs are taken into account. A
second practical limitation is that the model cannot capture
all sources of randomness in equity prices. A nontrivial
portion of daily price movements arises from noise that is
independent of the model’s input features. In some cases,
this noise may dominate the small predictive edge identified
by the model, rendering the signal insufficient for generating
alpha.

Beyond these practical constraints, there are also structural

limitations inherent to the framework. One such limitation
stems from discretizing continuous daily returns into a finite
set of bins. While this step simplifies the problem and en-
ables a classification-based approach, it necessarily removes
information. Returns that are numerically close may fall
into different bins, while returns that differ by several basis
points may be grouped together. Consequently, the model
cannot distinguish between movements within the same bin,
reducing predictive precision. Decreasing bin widths mit-
igates this issue only up to a point: sufficiently small bins
result in very few observations per class, leading to a large
softmax output and unstable cross-entropy optimization.
In the limit, the problem approaches a regression setting,
which would no longer support probability distributions or a
Markov transition structure. Thus, while discretization is es-
sential for classification, it imposes a fundamental constraint
on accuracy.

Another limitation arises from the nonstationary nature of
financial markets. Relationships between input features
and future returns can shift as macroeconomic conditions,
monetary policy, or firm-specific factors evolve. Training
a single neural network over a long historical window im-
plicitly averages across multiple market regimes, potentially
obscuring regime-specific patterns. A possible extension
would involve explicitly modeling regime changes, either by
training separate models for distinct market environments
or by constructing an adaptive framework that adjusts as
conditions evolve.

A further limitation arises from the conditional Markov
assumption underlying the framework. At each point in time,
the model conditions on the current state and the current
information. This disregards the path dependence exhibited
in many financial indicators. To circumvent this moving
forward, we plan to introduce synthetic variables in the
model to capture trends in the data beyond the information
we currently have that is constrained to a single day. We
anticipate that this will increase the accuracy of the model
and allow for the neural network architecture to find more
nuanced patterns in the data.

The final limitation concerns temporal mismatches in the
data. Most market variables are observed daily, whereas
accounting variables—such as balance sheets, income state-
ments, and cash flow statements—are reported quarterly. To
incorporate these variables, we interpolate them across trad-
ing days, creating a smooth daily progression that does not
reflect the true timing of fundamental information releases.
Although interpolation improves predictive performance, it
weakens the interpretability of the input features and may re-
duce the model’s ability to anticipate abrupt shifts in market
behavior driven by discrete information shocks.

7



A Deep Learning Framework for Time-Dependent Markov Chain Modeling of Equity Prices

6. Conclusion
In this work, we introduced a deep learning framework for
modeling equity returns using a time-dependent Markov
chain with a discrete state space. We discretized the daily
returns and trained a neural network to estimate conditional
transition probabilities given both the current return state
and observable market information. In doing so, we effec-
tively shifted the model objective away from point predic-
tion towards a more holistic view of $JPM’s probabilistic
dynamics. This approach emphasizes the interpretability
of Markov chains, while relaxing the static assumption of
them that limits their applicability in modern-day quantita-
tive finance.

Our empirical results show that explicit conditioning on the
current state leads to smoother transition matrices, improved
stability and modest gains in the predictive power relative
to a baseline model that ignores state information. While
exact classification accuracy remains low, this is an expected
outcome given the noise of daily equity returns. Regardless,
the learned transition matrix structure exhibits meaningful
regularities that are absent in empirical transition matrices
constructed from data. These findings suggest that deep
learning can be used as an effective mechanism for filtering
out noise and building interpretable probabilistic models.

In this paper, we demonstrate that modeling equity prices
through a learned, time-varying transition matrix provides a
alternative to traditional deep learning forecasts. This rep-
resentation naturally supports applications in risk analysis,
simulation and portfolio construction, especially when ex-
tended to multiple assets. Several limitations remain, but
the framework still offers a foundation for future use.

Potential extensions include adding regime dynamics, refin-
ing the discretization schemes and scaling the approach to
mixed-asset settings. Generally speaking, this work illus-
trates how classic stochastic modeling can be successfully
integrated with modern machine learning techniques to bet-
ter capture probabilistic structures.

8



A Deep Learning Framework for Time-Dependent Markov Chain Modeling of Equity Prices

References
Awiszus, M. and Rosenhahn, B. Markov chain neural

networks. URL http://arxiv.org/abs/1805.
00784.

Cecen, A. A., Jain, P., and Xiao, L. Machines, memory and
the markov property in stock returns: Deus ex machina?
ISSN 1556-5068. doi: 10.2139/ssrn.2963418. URL
https://www.ssrn.com/abstract=2963418.

Guyon, J. and Lekeufack, J. VOLATILITY IS (MOSTLY)
PATH-DEPENDENT.

Kiermayer, M. and Weiß, C. Neural calibration of hidden
inhomogeneous markov chains: information decompres-
sion in life insurance. 113(10):7129–7156. ISSN 0885-
6125, 1573-0565. doi: 10.1007/s10994-024-06551-w.
URL https://link.springer.com/10.1007/
s10994-024-06551-w.

Mettle, F. O., Boateng, L. P., Quaye, E. N. B., Aidoo,
E. K., and Seidu, I. Analysis of exchange rates as
time-inhomogeneous markov chain with finite states.
2022:1–13. ISSN 1687-0042, 1110-757X. doi: 10.
1155/2022/3524808. URL https://www.hindawi.
com/journals/jam/2022/3524808/.

Wilinski, A. Time series modeling and forecasting based on
a markov chain with changing transition matrices. 133:
163–172. ISSN 09574174. doi: 10.1016/j.eswa.2019.
04.067. URL https://linkinghub.elsevier.
com/retrieve/pii/S0957417419303033.

9

http://arxiv.org/abs/1805.00784
http://arxiv.org/abs/1805.00784
https://www.ssrn.com/abstract=2963418
https://link.springer.com/10.1007/s10994-024-06551-w
https://link.springer.com/10.1007/s10994-024-06551-w
https://www.hindawi.com/journals/jam/2022/3524808/
https://www.hindawi.com/journals/jam/2022/3524808/
https://linkinghub.elsevier.com/retrieve/pii/S0957417419303033
https://linkinghub.elsevier.com/retrieve/pii/S0957417419303033

