Methodology: Seven-Term Market-Informed Potential and Quantum Implementation

September 14, 2025

1 State Variable, Reference, and Objective

State (log-space). Define

$$x \equiv \log(P/P_0),$$

where P is the equity price and P_0 is a rolling fair-value anchor.

Reference P_0 . For isolating mechanics, we initially set $P \equiv P_0$ (x = 0); in production $P_0(t)$ is a dynamic fair value.

Objective. Construct a market-informed nonlinear potential V(x) that encodes valuation, macro, sector, and microstructure conditions, then solve the time-independent Schrödinger equation in x to infer directional tunneling bias (long/short).

2 Seven-Term Nonlinear Potential

We parameterize a seventh-degree polynomial centered at x = 0:

$$V(x) = \sum_{k=1}^{7} \alpha_k x^k, \tag{1}$$

with economically interpretable coefficients α_k . Odd powers (x^1, x^3, x^5, x^7) create directional asymmetry; even powers (x^2, x^4, x^6) shape confinement/barrier hardness.

Term	Driver (estimator)	Role in V
$\alpha_1 x$	Individual beta (60d rolling)	Local slope (short-horizon drift alignment)
$\alpha_2 x^2$	Sector beta (90d rolling)	Quadratic curvature (meso co-movement)
$\alpha_3 x^3$	Exp. weighted market beta (EWMA, λ)	Macro asymmetry from recent acceleration
$\alpha_4 x^4$	Credit spread (Baa – 10Y UST)	Barrier hardness (inverted: wider spread \Rightarrow easier escape)
$\alpha_5 x^5$	Relative P/E (stock / sector ETF)	Valuation-driven skew (over/undervaluation)
$\alpha_6 x^6$	Amihud illiquidity (30d)	Outer-tail stiffness (microstructure friction)
$\alpha_7 x^7$	Market drawdown (e.g., 1y SPX)	Nonlinear tail skew under systemic stress

Table 1: Economic mapping for the seven-term potential.

3 Data Definitions and Estimators

Betas

Let R_s , R_m , R_{sec} denote stock, market, and sector returns (daily unless noted).

Individual beta (60d).

$$\beta_{\text{indiv}}^{(60)} = \frac{\text{Cov}(R_s, R_m)}{\text{Var}(R_m)}$$
 on the most recent 60 trading days.

Sector beta (90d).

$$\beta_{\rm sector}^{(90)} = \frac{{
m Cov}(R_s, R_{
m sec})}{{
m Var}(R_{
m sec})}$$
 on the most recent 90 trading days.

Exp. weighted market beta (EWMA). With weights $w_i = \lambda^i$ (e.g., $\lambda \in [0.94, 0.97]$),

$$\beta_{\text{mkt}}^{\text{EW}} = \frac{\sum_{i} w_{i} (R_{s,i} - \bar{R}_{s}^{(w)}) (R_{m,i} - \bar{R}_{m}^{(w)})}{\sum_{i} w_{i} (R_{m,i} - \bar{R}_{m}^{(w)})^{2}}.$$

Credit Spread (Baa – 10Y UST)

Let spread = BAA - GS10 (e.g., FRED series). We invert the usual hardness mapping to reflect dislocation pressure:

$$\alpha_4 = s_4 \frac{\bar{s}}{\text{spread}},$$

so wider spreads $\uparrow \Rightarrow \alpha_4 \downarrow \Rightarrow$ shallower/narrower barriers (higher tunneling likelihood).

Relative P/E (stock / sector ETF)

relPE =
$$\frac{PE_{\text{stock}}}{PE_{\text{sectorETF}}}$$
, $\alpha_5 = s_5 \, (\text{relPE} - 1)$.

Amihud Illiquidity (30d)

With daily absolute returns $|r_t|$ and volume Vol_t ,

ILLIQ =
$$\frac{1}{N} \sum_{t=1}^{N} \frac{|r_t|}{\text{Vol}_t}$$
, $\alpha_6 = s_6 \text{ ILLIQ}$.

Higher illiquidity \Rightarrow stiffer outer walls.

Market Drawdown (e.g., 1y)

For a lookback window of length W (e.g., W = 252):

$$dd = \max \left\{ 0, \frac{P_{\text{max}} - P}{P_{\text{max}}} \right\}, \quad \alpha_7 = s_7 \max\{0, dd - \bar{d}\}.$$

4 Quantum Formulation and Numerical Implementation

Time-independent Schrödinger equation in log-space.

$$-\frac{\hbar^2}{2m}\psi''(x) + V(x)\psi(x) = E\psi(x).$$
 (2)

We optionally identify $\hbar^2/2m = \sigma^2$ to couple quantum mobility to realized volatility.

Domain and BCs. Choose $x \in [-L, L]$ (e.g., $L \in [0.25, 0.35] \approx \pm 25 - 35\%$ log-returns), with Dirichlet $\psi(\pm L) = 0$.

Discretization. Uniform grid x_i with spacing Δx . The tridiagonal Hamiltonian is

$$H = -\sigma^2 D_{xx} + \operatorname{diag}(V(x_i)),$$

where D_{xx} is the standard second-difference operator. Solve $H\Psi = E\Psi$ for low-lying eigenpairs (e.g., eigh_tridiagonal); normalize $\int |\psi_n|^2 dx = 1$.

Numerical checks. Refine Δx until eigenspectrum/waveforms converge; increase L to suppress boundary artifacts.

Tunneling Asymmetry Metrics (Prototype)

Bound-state bias. Ground-state mass imbalance:

$$\Delta p = \int_0^L |\psi_0(x)|^2 dx - \int_{-L}^0 |\psi_0(x)|^2 dx,$$

with $\Delta p > 0$ ($\Delta p < 0$) favoring right-escape (left-escape).

WKB transmissions (scattering proxy). For a chosen energy E and turning points V(x) = E,

$$T_{\text{side}} \approx \exp\left(-2\int_{x_1}^{x_2} \sqrt{\frac{V(x) - E}{\sigma^2}} dx\right),$$

compare T_{right} vs T_{left} for the trade direction.

5 Normalization, Calibration, and Stability

- Feature scaling: $\alpha_k = s_k f_k(z_k)$ via baselines $(\bar{s}, \bar{d}, 1)$ or z-scores.
- Coercivity: ensure even-degree tails dominate on [-L, L]; maintain $\alpha_6 > 0$. Optionally add tiny $+\alpha_8 x^8$ safeguard.
- Scale selection: tune s_k so V(x) near |x| = 0.1 0.2 is O(1-10) for numerical conditioning.
- Volatility coupling: σ reflects realized vol; larger σ flattens effective barriers in quantum units.

6 Data Pipeline (Current Estimators)

- Prices/returns: yfinance (stock, sector ETF, SPX).
- Betas: 60d rolling (α_1) , 90d rolling (α_2) , EWMA (α_3) .
- Credit spread: FRED (BAA, GS10); map $\alpha_4 \propto 1/\text{spread}$.
- Relative P/E: trailingPE for stock and sector ETF; $\alpha_5 = s_5 (\text{relPE} 1)$.
- Illiquidity: Amihud (30d) from Adj. Close & Volume; $\alpha_6 = s_6$ ILLIQ.
- Drawdown: 252d SPX drawdown; $\alpha_7 = s_7 \max\{0, dd \bar{d}\}.$

7 Trading Signal Primitives

- 1. Wavefunction bias: sign/magnitude of Δp (ground state or mixture of low modes).
- 2. Transmission asymmetry: T_{right} vs T_{left} at energy proxy E (momentum/order flow/vol).
- 3. **Regime filter:** use correlation diagnostics (e.g., Corr(V(t), P(t))) to gate signals in tunneling vs momentum regimes.

8 Open Design Choices (Tracked)

- Spread asymmetry: revisit whether downside bias from spreads lives in the potential (e.g., α_3 as function of spread, signed quartic $x|x|^3$) or in tunneling (boundary/energy choice), with the aim of exposing institutional model misspecification.
- Energy selection E: tie to measurable "market pressure" (short-horizon momentum, OFI, vol regime).
- Coercivity guarantee: enforce α_6 dominance on [-L,L] or include small x^8 term.

Summary

We built a data-driven, asymmetric, seventh-degree potential V(x) with explicit financial semantics per term, a stable numerical Schrödinger solver in log-space, and a decision scaffold for extracting directional tunneling signals. The mapping is modular, interpretable, and designed for calibration, regime analysis, and live deployment.